Reliability Analysis of Dynamic Systems by Translating Temporal Fault Trees into Bayesian Networks

نویسندگان

  • Sohag Kabir
  • Martin Walker
  • Yiannis Papadopoulos
چکیده

Classical combinatorial fault trees can be used to assess combinations of failures but are unable to capture sequences of faults, which are important in complex dynamic systems. A number of proposed techniques extend fault tree analysis for dynamic systems. One of such technique, Pandora, introduces temporal gates to capture the sequencing of events and allows qualitative analysis of temporal fault trees. Pandora can be easily integrated in model-based design and analysis techniques. It is, therefore, useful to explore the possible avenues for quantitative analysis of Pandora temporal fault trees, and we identify Bayesian Networks as a possible framework for such analysis. We describe how Pandora fault trees can be translated to Bayesian Networks for dynamic dependability analysis and demonstrate the process on a simplified fuel system model. The conversion facilitates predictive reliability analysis of Pandora fault trees, but also opens the way for post-hoc diagnostic analysis of failures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compiling Dyanamic Fault Trees into Dynamic Bayesian Nets for Reliability Analysis: the RADYBAN Tool

In this paper, we present Radyban (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze systems modeled by means of Dynamic Fault Trees (DFT), by relying on automatic conversion into Dynamic Bayesian Networks (DBN). The tools aims at providing a familiar interface to reliability engineers, by allowing them to model the system to be analyzed with quite a ...

متن کامل

Radyban: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks

In this paper, we present RADYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the inferen...

متن کامل

Improved Dynamic Fault Tree modelling using Bayesian Networks

1. Background In modelling fault-tolerant systems , space state based approaches such as dynamic fault trees (DFTs) [4], have been shown to increase the power of traditional combinatorial models, like static fault trees (FTs) [9]. However, in practice, these approaches have severe limitations when dealing with the increasing complexity of component dependencies and failure behaviours of today’s...

متن کامل

Bayes Networks and Fault Tree Analysis Application in Reliability Estimation (Case Study: Automatic Water Sprinkler System)

In this study, the application of Bayes networks and fault tree analysis in reliability estimation have been investigated. Fault tree analysis is one of the most widely used methods for estimating reliability. In recent years, a method called "Bayes Network" has been used, which is a dynamic method, and information about the probable failure of the system components will be updated according to...

متن کامل

Research on Safety Risk of Dangerous Chemicals Road Transportation Based on Dynamic Fault Tree and Bayesian Network Hybrid Method (TECHNICAL NOTE)

Safety risk study on road transportation of hazardous chemicals is a reliable basis for the government to formulate transportation planning and preparing emergent schemes, but also is an important reference for safety risk managers to carry out dangerous chemicals safety risk managers. Based on the analysis of the transport safety risk of dangerous chemicals at home and abroad, this paper studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014